Jtcase - портал о строительстве

В недрах земли находится большое сокровище. Это не золото, не серебро и не драгоценные камни - это огромный запас геотермальной энергии.
Большая часть этой энергии заключена в слоях расплавленных пород, называемых магмой. Тепло Земли - настоящее сокровище, поскольку это чистый источник энергии, и он имеет преимущества перед энергией нефти, газа и атома.
Глубоко под землей температура достигает сотен и даже тысяч градусов по Цельсию. Предполагают, что количество подземного тепла, выходящего каждый год на поверхность, в пересчете на мегаватт-часы составляет 100 миллиардов. Это во много раз превышает количество электроэнергии, потребляемой во всем мире. Какая сила! Однако укротить ее совсем не просто.

Как добраться до сокровища
Какое-то количество тепла находится в почве, даже недалеко от поверхности Земли. Его можно извлечь при помощи тепловых насосов, подсоединенных к трубам, проложенным под землей. Энергию земных недр можно использовать как для обогрева домов зимой, так и для других целей. Люди, живущие неподалеку от горячих источников или в районах, где происходят активные геологические процессы, нашли и другие способы применения тепла Земли. В древности римляне, например, использовали тепло горячих источников для бань.
Но большая часть тепла сосредоточена под земной корой в слое, называемом мантией. Средняя толщина земной коры составляет 35 километров, и современные бурильные технологии не позволяют проникнуть на такую глубину. Однако земная кора состоит из многочисленных плит, и в некоторых местах, особенно на месте их стыка, она тоньше. В этих местах магма поднимается ближе к поверхности Земли и нагревает воду, попавшую в пласты горных пород. Эти пласты обычно залегают на глубине всего лишь двух-трех километров от поверхности Земли. При помощи современных бурильных технологий проникнуть туда вполне по силам. Энергию геотермальных источников можно извлечь и с пользой применять.

Энергия на службе у человека
На уровне моря вода превращается в пар при температуре 100 градусов по Цельсию. Но под землей, где давление намного выше, вода остается в жидком состоянии и при более высоких температурах. Точка кипения воды повышается до 230, 315 и 600 градусов по Цельсию на глубине 300, 1 525 и 3 000 метров соответственно. Если температура воды в пробуренной скважине выше 175 градусов по Цельсию, то эту воду можно использовать для работы электрогенераторов.
Вода высоких температур обычно встречается в районах недавней вулканической активности, например в Тихоокеанском геосинклинальном поясе - там, на островах Тихого океана, много действующих, а также потухших вулканов. Филиппины находятся в этой зоне. И в последние годы эта страна достигла значительных успехов в использовании геотермальных источников для производства электроэнергии. Филиппины стали одним из самых крупных в мире производителей геотермальной энергии. Более 20 процентов всего электричества, потребляемого страной, получают таким способом.
Чтобы больше узнать о том, как используют запасы тепла Земли для производства электричества, посетите большую геотермальную электростанцию Мак-Бан в филиппинской провинции Лагуна. Мощность электростанции составляет 426 мегаватт.

Геотермальная электростанция
Дорога ведет к геотермальному полю. Приближаясь к станции, попадаете в целое царство больших труб, по которым пар из геотермальных колодцев поступает к генератору. Пар по трубам идет и с расположенных неподалеку холмов. Через определенные промежутки огромные трубы согнуты в специальные петли, позволяющие им расширяться и сжиматься при нагревании и охлаждении.
Рядом с этим местом находится офис компании "Philippine Geothermal, Inc.". Недалеко от офиса находится несколько эксплуатационных скважин. На станции используется тот же метод бурения, что и при нефтедобыче. Разница лишь в том, что эти скважины больше в диаметре. Колодцы становятся трубопроводами, через которые горячая вода и пар под давлением поднимаются к поверхности. Именно такая смесь поступает на электростанцию. Вот два колодца, расположенные очень близко. Они сближаются только у поверхности. Под землей один из них уходит вертикально вниз, а другой направляют сотрудники станции по своему усмотрению. Так как земля дорогая, то такое расположение очень выгодно - буря колодцы близко друг к другу, экономятся средства.
На этой площадке применяется "технология мгновенного испарения". Глубина самого глубокого колодца здесь 3 700 метров. Горячая вода находится под высоким давлением глубоко под землей. Но когда вода поднимается к поверхности, давление падает, и большая часть воды мгновенно превращается в пар, отсюда и название.
По трубопроводу вода поступает в сепаратор. Здесь пар отделяется от горячей воды или геотермального рассола. Но и после этого пар еще не готов для поступления в электрогенератор - капли воды остаются в потоке пара. В этих каплях есть частицы веществ, которые могут попасть в турбину и повредить ее. Поэтому после сепаратора пар попадает в газоочиститель. Здесь пар очищается от этих частиц.
По большим трубам, покрытым изоляцией, очищенный пар поступает на электростанцию, расположенную приблизительно в километре отсюда. Прежде чем пар попадает в турбину и приводит в движение генератор, его пропускают еще через один газоочиститель, чтобы удалить образовавшийся конденсат.
Если подняться на вершину холма, то взору откроется вся геотермальная площадка.
Общая площадь этого участка около семи квадратных километров. Здесь находятся 102 колодца, из них 63 - эксплуатационные скважины. Многие другие используются, чтобы закачивать воду обратно в недра. Каждый час перерабатывается такое огромное количество горячей воды и пара, что необходимо возвращать отделенную воду обратно в недра, чтобы не наносить вреда окружающей среде. А также этот процесс помогает восстановлению геотермального поля.
Как геотермальная электростанция влияет на вид местности? Больше всего о ней напоминает пар, выходящий из паровых турбин. Вокруг электростанции растут кокосовые пальмы и другие деревья. В долине, расположенной у подножия холма, построено много жилых домов. Следовательно, при правильном использовании геотермальная энергия может служить людям, не нанося вреда окружающей среде.
На данной электростанции для производства электроэнергии используют только высокотемпературный пар. Однако не так давно попробовали получать энергию при помощи жидкости, температура которой ниже 200 градусов по Цельсию. И в итоге появилась геотермальная электростанция с двойным циклом. В ходе работы горячая пароводяная смесь используется для превращения в газообразное состояние рабочей жидкости, которая, в свою очередь, приводит в движение турбину.

Плюсы и минусы
Использование геотермальной энергии имеет много плюсов. Страны, где она применяется, меньше зависят от нефти. Каждые десять мегаватт электроэнергии, получаемые на геотермальных электростанциях ежегодно, помогают экономить 140000 баррелей сырой нефти в год. К тому же геотермальные ресурсы огромны, и опасность их истощения во много раз ниже, чем в случае со многими другими энергетическими ресурсами. Использование геотермальной энергии решает проблему загрязнения окружающей среды. К тому же ее себестоимость довольно низкая по сравнению со многими другими видами энергии.
Есть несколько минусов экологического характера. В геотермальном паре обычно содержится сероводород, который в больших количествах ядовит, а в небольших - неприятен из-за запаха серы. Однако системы, удаляющие этот газ, эффективны и более действенны, чем системы понижения токсичности выхлопа на электростанциях, работающих на ископаемом топливе. Кроме того, частицы в пароводяном потоке иногда содержат небольшое количество мышьяка и других ядовитых веществ. Но при закачивании отходов в землю опасность сводится до минимума. Беспокойство может вызывать и возможность загрязнения грунтовых вод. Чтобы этого не произошло, геотермальные колодцы, пробуренные на большую глубину, должны быть "одеты" в каркас из стали, и цемента.

Среди альтернативных источников геотермальная энергия занимает значительное место - ее так или иначе используют примерно в 80 странах по всему миру. В большинстве случаев это происходит на уровне строительства теплиц, бассейнов, применения в качестве лечебного средства или отопления.

В нескольких странах - в том числе США, Исландии, Италии, Японии и других - построены и работают электростанции.

Геотермальная энергия в целом подразделяется на две разновидности - петротермальную и гидротермальную. Первый тип использует как источник горячие горные породы. Второй - подземные воды.

Если свести все данные по теме в одну диаграмму, обнаружится, что в 99% случаев используется тепло пород, и только в 1% геотермальная энергия извлекается из подземных вод.

Петротермальная энергетика

На настоящий момент в мире достаточно широко используется тепло земных недр, причем преимущественно это энергия неглубоких скважин - до 1 км. С целью обеспечения электричеством, теплом или ГВС устанавливаются скважинные теплообменники, работающие на жидкостях с низкой температурой кипения (например, на фреоне).

Сейчас использование скважинного теплообменника является наиболее рациональным способом добычи тепла. Выглядит это так: теплоноситель циркулирует в замкнутом контуре. Нагретый поднимается по концентрично опущенной трубе, отдавая свое тепло, после чего, охлажденный, при помощи насоса подается в обсадную.

В основе использования энергии земных недр лежит природное явление - по мере приближения к ядру Земли растет температура земной коры и мантии. На уровне 2-3 км от поверхности планеты она достигает более 100 °С, в среднем увеличиваясь с каждым последующим километром на 20 °С. На глубине 100 км температура достигает уже 1300-1500 º-С.

Гидротермальная энергетика

Вода, циркулирующая на больших глубинах, нагревается до значительных величин. В сейсмически активных районах она поднимается на поверхность по трещинам в земной коре, в спокойных же регионах ее можно вывести с помощью скважин.

Принцип действия тот же: нагретая вода поднимается по скважине вверх, отдает тепло, и возвращается по второй трубе вниз. Цикл практически бесконечен и возобновляем до тех пор, пока в земных недрах остается тепло.

В некоторых сейсмически активных регионах горячие воды лежат так близко к поверхности, что можно воочию наблюдать, как работает геотермальная энергия. Фото окрестностей вулкана Крафла (Исландия) демонстрирует гейзеры, которые передают пар для действующей там ГеоТЭС.

Основные черты геотермальной энергетики

Внимание к альтернативным источникам обусловлено тем, что запасы нефти и газа на планете не бесконечны, и постепенно исчерпываются. Кроме того, они есть не везде, и многие страны зависят от поставок из других регионов. Среди иных важных факторов - негативное влияние ядерной и топливной энергетики на среду обитания человека и дикую природу.

Большое достоинство ГЭ - возобновляемость и универсальность: возможность использовать для водо- и теплоснабжения, или для выработки электроэнергии, или для всех трех целей сразу.

Но главное - это геотермальная энергия, плюсы и минусы которой зависят не столько от местности, сколько от кошелька заказчика.

Достоинства и недостатки ГЭ

В числе преимуществ этого вида энергии следующие:

  • она возобновляемая и практически неиссякаемая;
  • независима от времени суток, сезона, погоды;
  • универсальна - с ее помощью можно обеспечить водо- и теплоснабжение, а также электричество;
  • геотермальные источники энергии не загрязняют окружающую среду;
  • не вызывают ;
  • станции не занимают много места.

Однако имеются и недостатки:

  • геотермальная энергия не считается полностью безвредной из-за выбросов пара, в составе которого могут быть сероводород, радон и другие вредные примеси;
  • при использовании воды с глубоких горизонтов стоит вопрос ее утилизации после использования - из-за химического состава такую воду нужно сливать либо обратно в глубокие слои, либо в океан;
  • постройка станции относительно дорога - это удорожает и стоимость энергии в итоге.

Сферы применения

На сегодняшний день геотермальные ресурсы используются в сельском хозяйстве, садоводстве, аква- и термокультуре, промышленности, сфере жилищно-коммунальных хозяйств. В нескольких странах построены крупные комплексы, обеспечивающие население электроэнергией. Продолжается разработка новых систем.

Сельское хозяйство и садоводство

Чаще всего использование геотермальной энергии в сельском хозяйстве сводится к обогреву и поливу оранжерей, теплиц, установок аква- и гидрокультуры. Подобный подход применяется в нескольких государствах - Кении, Израиле, Мексике, Греции, Гватемале и Теде.

Подземные источники применяются для полива полей, обогрева почвы, поддержания постоянной температуры и влажности в оранжерее или теплице.

Промышленность и ЖКХ

В ноябре 2014 года в Кении начала работать крупнейшая на то время геотермальная электростанция мира. Вторая по размерам находится в Исландии - это Хеллишейди, берущая тепло от источников возле вулкана Хенгидль.

Другие страны, использующие геотермальную энергию в промышленных масштабах: США, Филиппины, Россия, Япония, Коста-Рика, Турция, Новая Зеландия и т. д.

Известны четыре основные схемы добывания энергии на ГеоТЭС:

  • прямая, когда пар направляется по трубам в турбины, соединенные с электрогенераторами;
  • непрямая, аналогичная предыдущей во всем, за исключением того, что перед попаданием в трубы пар очищается от газов;
  • бинарная - в качестве рабочего тепла используется не вода или пар, а другая жидкость, имеющая низкую температуру кипения;
  • смешанная - аналогична прямой, но после конденсации здесь удаляют из воды не растворившиеся газы.

В 2009 году группа исследователей, искавшая пригодные к использованию геотермальные ресурсы, достигла расплавленной магмы всего на глубине 2,1 км. Подобное попадание в магму - большая редкость, это всего второй известный случай (предыдущий произошел на Гавайях в 2007 году).

Хотя соединенная с магмой труба ни разу не подключалась к находящейся неподалеку ГеоТЭС Крафла, ученые получили весьма многообещающие результаты. До сих пор все работающие станции брали тепло опосредованно, из земных пород либо из подземных вод.

Частный сектор

Одна из наиболее перспективных сфер - частный сектор, для которого геотермальная энергия - это реальная альтернатива автономного газового отопления. Самая серьезная преграда здесь - при довольно дешевой эксплуатации высокая начальная стоимость оборудования, которая значительно выше, чем цена установки «традиционного» отопления.

Свои разработки для частного сектора предлагают компании MuoviTech, Geodynamics Ltd, Vaillant, Viessmann, Nibe.

Страны, использующие тепло планеты

Безусловным лидером в использовании георесурсов является США - в 2012 году выработка энергии в этой стране достигла отметки 16.792 миллиона мегаватт-часов. В том же году, суммарная мощность всех геотермальных станций на территории Штатов достигала 3386 МВт.

ГеоТЭС на территории США расположены в штатах Калифорния, Невада, Юта, Гавайи, Орегон, Айдахо, Нью-Мехико, Аляска и Вайоминг. Самая крупная группа заводов носит название «Гейзеры» и расположена неподалеку от Сан-Франциско.

Кроме Соединенных Штатов, в первой десятке лидеров (по состоянию на 2013 год) также находятся Филиппины, Индонезия, Италия, Новая Зеландия, Мексика, Исландия, Япония, Кения и Турция. При этом в Исландии геотермальные источники энергии обеспечивают 30% от всей потребности страны, на Филиппинах - 27%, а в США - меньше 1%.

Потенциальные ресурсы

Работающие станции - только начало, отрасль лишь начинает развиваться. Исследования в этом направлении идут постоянно: более чем в 70 странах ведется разведка потенциальных месторождений, в 60 освоено промышленное использование ГЭ.

Перспективными выглядят сейсмически активные районы (как это видно на примере Исландии) - штат Калифорния в США, Новая Зеландия, Япония, страны Центральной Америки, Филиппины, Исландия, Коста-Рика, Турция, Кения. Эти страны имеют потенциально выгодные не исследованные месторождения.

В России это Ставропольский край и Дагестан, остров Сахалин и Курильские о-ва, Камчатка. В Беларуси определенный потенциал есть на юге страны, охватывая города Светлогорск, Гомель, Речица, Калинковичи и Октябрьский.

На Украине перспективными являются Закарпатская, Николаевская, Одесская и Херсонская области.

Достаточно перспективным является полуостров Крым, тем более что большая часть потребляемой им энергии импортируется извне.


Внимание, только СЕГОДНЯ!

Современная востребованность геотермальной энергии как одного из видов возобновляемой энергии обусловлена: истощением запасов органического топлива и зависимостью большинства развитых стран от его импорта (в основном импорта нефти и газа), а также с существенным отрицательным влиянием топливной и ядерной энергетики на среду обитания человека и на дикую природу. Все же, применяя геотермальную энергию, следует в полной мере учитывать ее достоинства и недостатки.

Главным достоинством геотермальной энергии является возможность ее использования в виде геотермальной воды или смеси воды и пара (в зависимости от их температуры) для нужд горячего водо- и теплоснабжения, для выработки электроэнергии либо одновременно для всех трех целей, ее практическая неиссякаемость, полная независимость от условий окружающей среды, времени суток и года. Тем самым использование геотермальной энергии (наряду с использованием других экологически чистых возобновляемых источников энергии) может внести существенный вклад в решение следующих неотложных проблем:

· Обеспечение устойчивого тепло- и электроснабжения населения в тех зонах нашей планеты, где централизованное энергоснабжение отсутствует или обходится слишком дорого (например, в России на Камчатке, в районах Крайнего Севера и т.п.).

· Обеспечение гарантированного минимума энергоснабжения населения в зонах неустойчивого централизованного энергоснабжения из-за дефицита электроэнергии в энергосистемах, предотвращение ущерба от аварийных и ограничительных отключений и т.п.

· Снижение вредных выбросов от энергоустановок в отдельных регионах со сложной экологической обстановкой.

При этом в вулканических регионах планеты высокотемпературное тепло, нагревающее геотермальную воду до значений температур, превышающих 140-150°С, экономически наиболее выгодно использовать для выработки электроэнергии. Подземные геотермальные воды со значениями температур, не превышающими 100°С, как правило, экономически выгодно использовать для нужд теплоснабжения, горячего водоснабжения и для других целей в соответствии с рекомендациями, приведенными в табл.1 .

Таблица 1

Обратим внимание на то, что эти рекомендации по мере развития и совершенствования геотермальных технологий пересматриваются в сторону использования для производства электроэнергии геотермальных вод с все более низкими температурами. Так, разработанные в настоящее время комбинированные схемы использования геотермальных источников позволяют использовать для производства электроэнергии теплоносители с начальными температурами 70-80°С, что значительно ниже рекомендуемых в табл.1 температур (150°С и выше). В частности, в Санкт-Петербургском политехническом институте созданы гидропаровые турбины, использование которых на ГеоТЭС позволяет увеличивать полезную мощность двухконтурных систем (второй контур - водный пар) в диапазоне температур 20-200°С в среднем на 22 %.

Значительно повышается эффективность применения термальных вод при их комплексном использовании. При этом в разных технологических процессах можно достичь наиболее полной реализации теплового потенциала воды, в том числе и остаточного, а также получить содержащиеся в термальной воде ценные компоненты (йод, бром, литий, цезий, кухонная соль, глауберова соль, борная кислота и многие другие) для их промышленного использования.

Основной недостаток геотермальной энергии - необходимость обратной закачки отработанной воды в подземный водоносный горизонт. Другой недостаток этой энергии заключается в высокой минерализации термальных вод большинства месторождений и наличии в воде токсичных соединений и металлов, что в большинстве случаев исключает возможность сброса этих вод в расположенные на поверхности природные водные системы. Отмеченные выше недостатки геотермальной энергии приводят к тому, что для практического использования теплоты геотермальных вод необходимы значительные капитальные затраты на бурение скважин, обратную закачку отработанной геотермальной воды, а также на создание коррозийно-стойкого теплотехнического оборудования.

Однако в связи с внедрением новых, менее затратных, технологий бурения скважин, применением эффективных способов очистки воды от токсичных соединений и металлов капитальные затраты на отбор тепла от геотермальных вод непрерывно снижаются. К тому же следует иметь ввиду, что геотермальная энергетика в последнее время существенно продвинулась в своем развитии. Так, последние разработки показали возможность выработки электроэнергии при температуре пароводяной смеси ниже 80єС, что позволяет гораздо шире применять ГеоТЭС для выработки электроэнергии. В связи с эти ожидается, что в странах со значительным геотермальным потенциалом и первую очередь в США мощность ГеоТЭС в самое ближайшее время удвоится. .

геотермальный источник энергия потенциал

Стремительный рост энергопотребления, ограниченность невозобновляемых природных богатств, вынуждают задуматься об использовании альтернативных источников энергии. В этом отношении особого внимания заслуживает применение геотермальных ресурсов.

Геотермальные электростанции (ГеоЭС) – сооружения для получения электрической энергии за счет природного тепла Земли.

Геотермальная энергетика имеет более чем столетнюю историю. В июле 1904 года в итальянском городке Лардерелло был проведен первый эксперимент, позволивший получить электроэнергию из геотермального пара. А через несколько лет здесь же была запущена первая геотермальная электростанция, работающая до сих пор.

Перспективные территории

Для построения геотермальных электростанций идеальными считаются районы с геологической активностью, где естественное тепло находится на сравнительно небольшой глубине.

Сюда относятся области, изобилующие гейзерами, открытыми термальными источниками с водой, разогретой вулканами. Именно здесь геотермальная энергетика развивается наиболее активно.

Однако и в сейсмически неактивных районах имеются пласты земной коры, температура которых составляет более 100 °С.

На каждых 36 метрах глубины температурный показатель возрастает на 1 °С. В этом случае бурят скважину и закачивают туда воду.

На выходе получают кипяток и пар, которые можно использовать как для обогрева помещений, так и для производства электрической энергии.

Территорий, где можно таким образом получать энергию, много, поэтому геотермальные электростанции функционируют повсеместно.

Источники получения геотермальной энергии

Добыча естественного тепла может осуществляться из следующих источников.

Принципы работы геотермальных электростанций

Сегодня применяется три способа производства электричества с использованием геотермальных средств, зависящих от состояния среды (вода или пар) и температуры породы.

  1. Прямой (использование сухого пара). Пар напрямую воздействует на турбину, питающую генератор.
  2. Непрямой (применение водяного пара). Здесь используется гидротермальный раствор, который закачивается в испаритель. Полученное при снижении давления испарение приводит турбину в действие.
  3. Смешанный, или бинарный. В этом случае используется гидротермальная вода и вспомогательная жидкость с низкой точкой кипения, например фреон, который закипает под воздействием горячей воды. Образовавшийся при этом пар от фреона крутит турбину, потом конденсируется и снова возвращается в теплообменник для нагрева. Образуется замкнутая система (контур), практически исключающая вредные выбросы в атмосферу.
Первые геотермальные электростанции работали на сухом пару.

Непрямой способ на сегодняшний день считается самым распространенным. Здесь используются подземные воды температурой около 182 °С, которые закачиваются в генераторы, расположенные на поверхности.

Достоинства ГеоЭС

  • Запасы геотермальных ресурсов считаются возобновляемыми, практически неисчерпаемыми, но при одном условии : в нагнетательную скважину нельзя закачивать большое количество воды в короткий промежуток времени.
  • Для работы станции не требуется внешнее топливо.
  • Установка может работать автономно, на своем вырабатываемом электричестве. Внешний источник энергии необходим лишь для первого запуска насоса.
  • Станция не требует дополнительных вложений, за исключением расходов на техническое обслуживание и ремонтные работы.
  • Геотермальным электрическим станциям не нужны площади для санитарных зон.
  • В случае расположения станции на морском или океаническом берегу, возможно ее использование для естественного опреснения воды. Этот процесс может происходить непосредственно в режиме работы станции – при разогреве воды и охлаждении водяного испарения.

Недостатки геотермальных установок

  • Велики первоначальные вложения в разработку, проектирование и строительство геотермальных станций.
  • Зачастую проблемы возникают в выборе подходящего места для размещения электростанции и получении разрешения властей и местных жителей.
  • Через рабочую скважину возможны выбросы горючих и токсичных газов, минералов, которые содержатся в земной коре. Технологии на некоторых современных установках позволяют собирать эти выбросы и перерабатывать в топливо.
  • Бывает, что действующая электростанция останавливается. Это может произойти вследствие естественных процессов в породе либо при чрезмерной закачке воды в скважину.

Крупнейшие производители геотермальной энергии

В США и на Филиппинах построены самые крупные ГеоЭС. Они представляют собой целые геотермальные комплексы, состоящие из десятков отдельных геотермальных станций.

Самым мощным считается комплекс «Гейзеры», расположенный в Калифорнии. Он состоит из 22 двух станций с суммарной мощностью 725 МВт, достаточной для обеспечения многомиллионного города.
  • Мощность филиппинской электростанции «Макилинг-Банахау» составляет около 500 МВт.
  • Еще одна филиппинская электростанция с названием «Тиви» имеет мощность 330 МВт.
  • «Долина Империал» в США – комплекс из десяти геотермальных электростанций с совокупной мощностью 327 МВт.
  • Хронология развития отечественной геотермальной энергетики

Российская геотермальная энергетика начала свое развитие с 1954 года, когда было принято решение о создании лаборатории по исследованию естественных тепловых ресурсов на Камчатке.

  1. 1966 год – запущена Паужетская геотермальная электростанция с традиционным циклом (сухой пар) и мощностью 5 МВт. Через 15 лет ее мощность была доработана до 11 МВт.
  2. В 1967 году начала функционировать Паратунская станция с бинарным циклом. Кстати, патент на уникальную технологию бинарного цикла, разработанный и запатентованный советскими учеными С. Кутателадзе и Л. Розенфельдом, был куплен многими странами.

Большие уровни добычи углеводородного сырья в 1970-е годы, критическая экономическая ситуация в 90-е годы остановили развитие геотермальной энергетики в России. Однако сейчас интерес к ней вновь появился по ряду причин:

  • Цены на нефть и газ на внутреннем рынке становятся близкими к мировым.
  • Запасы топлива стремительно истощаются.
  • Вновь открытые месторождения углеводородов на дальневосточном шельфе и побережье Арктики в настоящее время малорентабельны.

Вам нравятся большие, мощные машины? Прочитайте интересную статью про .

Если вам нужно оборудование для дробления материалов – прочтите эту .

Перспективы освоения геотермальных ресурсов в России

Наиболее перспективными областями Российской Федерации в части использования тепловой энергии для выработки электричества являются Курильские острова и Камчатка.

На Камчатке имеются такие потенциальные геотермальные ресурсы с вулканическими запасами парогидротерм и энергетических термальных вод, которые способны обеспечить потребность края на 100 лет. Многообещающим считается Мутновское месторождение, известные запасы которого могут предоставить до 300 МВт электричества. История освоения этой области началась с георазведки, оценки ресурсов, проектирования и строительства первых камчатских ГеоЭС (Паужетской и Паратунской), а также Верхне-Мутновской геотермальной станции мощностью 12 МВт и Мутновской, имеющей мощность 50 МВт.

На Курильских островах функционируют две электростанции, использующие геотермальную энергию – на острове Кунашир (2,6 МВт) и на острове Итуруп (6МВт).

В сравнении с энергетическими ресурсами отдельных филиппинских и американских ГеоЭС отечественные объекты производства альтернативной энергии проигрывают значительно: их суммарная мощность не превышает и 90 МВт. Но камчатские электростанции, к примеру, обеспечивают потребности региона в электричестве на 25 %, что в случае непредвиденных прекращений поставки топлива не позволит жителям полуострова остаться без электроэнергии.

В России имеются все возможности для разработки геотермальных ресурсов – как петротермальных, так и гидрогеотермальных. Однако используются они крайне мало, а перспективных областей более чем достаточно. Кроме Курил и Камчатки возможно практическое применение на Северном Кавказе, Западной Сибири, Приморье, Прибайкалье, Охотско-Чукотском вулканическом поясе.

А́томная электроста́нция (АЭС) - ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимымиработниками

Достоинства и недостатки

Главное преимущество - практическая независимость от источников топлива из-за небольшого объёма используемого топлива, например 54 тепловыделяющих сборкиобщей массой 41 тонна на один энергоблок с реактором ВВЭР-1000 в 1-1,5 года (для сравнения, одна только Троицкая ГРЭС мощностью 2000 МВт сжигает за сутки дважелезнодорожных состава угля). Расходы на перевозку ядерного топлива, в отличие от традиционного, ничтожны. В России это особенно важно в европейской части, так как доставка угля из Сибири слишком дорога.

Огромным преимуществом АЭС является её относительная экологическая чистота. На ТЭС суммарные годовые выбросы вредных веществ, в которые входят сернистый газ, оксиды азота, оксиды углерода, углеводороды, альдегиды и золовая пыль, на 1000 МВт установленной мощности составляют от примерно 13 000 тонн в год на газовых и до 165 000 тонн на пылеугольных ТЭС. Подобные выбросы на АЭС полностью отсутствуют. ТЭС мощностью 1000 МВт потребляет 8 миллионов тонн кислородав год для окисления топлива, АЭС же не потребляют кислорода вообще. Кроме того, больший удельный (на единицу произведенной электроэнергии) выброс радиоактивных веществ даёт угольная станция. В угле всегда содержатся природные радиоактивные вещества, при сжигании угля они практически полностью попадают во внешнюю среду. При этом удельная активность выбросов ТЭС в несколько раз выше, чем для АЭС . Единственный фактор, в котором АЭС уступают в экологическом плане традиционным КЭС - тепловое загрязнение, вызванное большими расходами технической воды для охлаждения конденсаторов турбин, которое у АЭС несколько выше из-за более низкого КПД (не более 35 %), однако этот фактор важен для водных экосистем, а современные АЭС в основном имеют собственные искусственно созданные водохранилища-охладители или вовсе охлаждаются градирнями. Также некоторые АЭС отводят часть тепла на нужды отопления и горячего водоснабжения городов, что снижает непродуктивные тепловые потери, существуют действующие и перспективные проекты по использованию «лишнего» тепла в энергобиологических комплексах (рыбоводство, выращивание устриц, обогрев теплиц и пр.). Кроме того, в перспективе возможно осуществление проектов комбинирования АЭС с ГТУ, в том числе в качестве «надстроек» на существующих АЭС, которые могут позволить добиться аналогичного с тепловыми станциями КПД.

Для большинства стран, в том числе и России, производство электроэнергии на АЭС не дороже, чем на пылеугольных и тем более газомазутных ТЭС. Особенно заметно преимущество АЭС в стоимости производимой электроэнергии во время так называемых энергетических кризисов, начавшихся с начала 70-х годов. Падение цен нанефть автоматически снижает конкурентоспособность АЭС.

Затраты на строительство АЭС по оценкам, составленным на основе реализованных в 2000-х годах проектов, ориентировочно равны 2300 $ за кВт электрической мощности, эта цифра может снижаться при массовости строительства (для ТЭС на угле 1200 $, на газе - 950 $). Прогнозы на стоимость проектов, осуществляемых в настоящее время, сходятся на цифре 2000 $ за кВт (на 35 % выше, чем для угольных, на 45 % - газовых ТЭС).

Главный недостаток АЭС - тяжелые последствия аварий, для исключения которых АЭС оборудуются сложнейшими системами безопасности с многократными запасами и резервированием, обеспечивающими исключение расплавления активной зоны даже в случае максимальной проектной аварии (местный полный поперечный разрывтрубопровода циркуляционного контура реактора).

Серьёзной проблемой для АЭС является их ликвидация после выработки ресурса, по оценкам она может составить до 20 % от стоимости их строительства

По ряду технических причин для АЭС крайне нежелательна работа в манёвренных режимах, то есть покрытие переменной части графика электрической нагрузки

Тепловая (паротурбинная) электростанция: Электростанции, преобразующие тепловую энергию сгорания топлива в электрическую энергию, называются тепловыми (паротурбинными). Некоторые их преимущества и недостатки приведены ниже.

Преимущества 1. Используемое топливо достаточно дешево. 2. Требуют меньших капиталовложений по сравнению с другими электростанциями. 3. Могут быть построены в любом месте независимо от наличия топлива. Топливо может транспортироваться к месту расположения электростанции железнодорожным или автомобильным транспортом. 4. Занимают меньшую площадь по сравнению с гидроэлектростанциями. 5. Стоимость выработки электроэнергии меньше, чем у дизельных электростанций.

Недостатки 1. Загрязняют атмосферу, выбрасывая в воздух большое количество дыма и копоти. 2. Более высокие эксплуатационные расходы по сравнению с гидроэлектростанциями

Гидроэлектроста́нция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Богучанская ГЭС. 2010 год. Самая новая ГЭС в России

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Jtcase - портал о строительстве